domingo, 10 de septiembre de 2017

Principio de Arquímedes (Empuje)

El principio de Arquímedes afirma que todo cuerpo sumergido en un fluido experimenta un empuje vertical y hacia arriba igual al peso de fluido desalojado.
La explicación del principio de Arquímedes consta de dos partes como se indica en la figuras:
  1. El estudio de las fuerzas sobre una porción de fluido en equilibrio con el resto del fluido.
  2. La sustitución de dicha porción de fluido por un cuerpo sólido de la misma forma y dimensiones.
arquimedes_1.gif (4544 bytes)
Porción de fluido en equilibrio con el resto del fluido.
Consideremos, en primer lugar, las fuerzas sobre una porción de fluido en equilibrio con el resto de fluido. La fuerza que ejerce la presión del fluido sobre la superficie de separación es igual a p·dS, donde p solamente depende de la profundidad y dS es un elemento de superficie.
Puesto que la porción de fluido se encuentra en equilibrio, la resultante de las fuerzas debidas a la presión se debe anular con el peso de dicha porción de fluido. A esta resultante la denominamos empuje y su punto de aplicación es el centro de masa de la porción de fluido, denominado centro de empuje.
De este modo, para una porción de fluido en equilibrio con el resto, se cumple
Empuje=peso=rf·gV
El peso de la porción de fluido es igual al producto de la densidad del fluido rf  por la aceleración de la gravedad g y por el volumen de dicha porción V.
Se sustituye la porción de fluido por un cuerpo sólido de la misma forma y dimensiones.
Si sustituimos la porción de fluido por un cuerpo sólido de la misma forma y dimensiones. Las fuerzas debidas a la presión no cambian, por tanto, su resultante que hemos denominado empuje es la misma y actúa en el mismo punto, denominado centro de empuje.
Lo que cambia es el peso del cuerpo sólido y su punto de aplicación que es el centro de masa, que puede o no coincidir con el centro de empuje.
arquimedes_2.gif (2179 bytes)Por tanto, sobre el cuerpo actúan dos fuerzas: el empuje y el peso del cuerpo, que no tienen en principio el mismo valor ni están aplicadas en el mismo punto.En los casos más simples, supondremos que el sólido y el fluido son homogéneos y por tanto, coinciden el centro de masa del cuerpo con el centro de empuje.

Ejemplo:

Supongamos un cuerpo sumergido de densidad ρ rodeado por un fluido de densidad ρf. El área de la base del cuerpo es A y su altura h.
La presión debida al fluido sobre la base superior es p1= ρfgx, y la presión debida al fluido en la base inferior es p2= ρfg(x+h). La presión sobre la superficie lateral es variable y depende de la altura, está comprendida entre p1 y p2.
Las fuerzas debidas a la presión del fluido sobre la superficie lateral se anulan. Las otras fuerzas sobre el cuerpo son las siguientes:
  • Peso del cuerpo, mg
  • Fuerza debida a la presión sobre la base superior, p1·A
  • Fuerza debida a la presión sobre la base inferior, p2·A
En el equilibrio tendremos que
mg+p1·A= p2·A
mg
+ρfgx·A= ρfg(x+hA
o bien,
mg=ρfh·Ag
Como la presión en la cara inferior del cuerpo p2 es mayor que la presión en la cara superior p1, la diferencia es ρfgh. El resultado es una fuerza hacia arriba ρfgh·A sobre el cuerpo debida al fluido que le rodea.
Como vemos, la fuerza de empuje tiene su origen en la diferencia de presión entre la parte superior y la parte inferior del cuerpo sumergido en el fluido.
Con esta explicación surge un problema interesante y debatido. Supongamos que un cuerpo de base plana (cilíndrico o en forma de paralepípedo) cuya densidad es mayor que la del fluido, descansa en el fondo del recipiente.
Si no hay fluido entre el cuerpo y el fondo del recipiente ¿desaparece la fuerza de empuje?, tal como se muestra en la figura
Si se llena un recipiente con agua y se coloca un cuerpo en el fondo, el cuerpo quedaría en reposo sujeto por su propio peso mg y la fuerza p1A que ejerce la columna de fluido situada por encima del cuerpo, incluso si la densidad del cuerpo fuese menor que la del fluido. La experiencia demuestra que el cuerpo flota y llega a la superficie.
El principio de Arquímedes sigue siendo aplicable en todos los casos y se enuncia en muchos textos de Física del siguiente modo:


Cuando un cuerpo está parcialmente o totalmente sumergido en el fluido que le rodea, una fuerza de empuje actúa sobre el cuerpo. Dicha fuerza tiene dirección hacia arriba y su magnitud es igual al peso del fluido que ha sido desalojado por el cuerpo.
DENSIDAD
La densidad, es una de las propiedades más características de cada sustancia.
Es a masa de la unidad de volumen.

Se obtiene dividiendo una masa conocida de la sustancia entre el volumen que ocupa.
Llamando m a la masa, y v al volumen, la densidad, d, vale:
d= m/v.
Unidades.
En el Sistema Internacional la unidad de densidad es el kg (Unidad de masa) entre el m3 (unidad de volumen). Es decir, el kg/cm3
Sin embargo es muy frecuente expresar la densidad en g/cm3 (Unidad cegesimal).
PESO ESPECÍFICO.
El peso específico de una sustancia es el peso de la unidad de volumen.
Se obtiene dividiendo un peso conocido de la sustancia entre el volumen que ocupa.
Llamando p al peso y v al volumen, el peso específico, Pc, vale:
Pc= p/v
Unidades.
Sistema Internacional.
La unidad de peso específico es el N/m3; es decir, el newton (Unidad de fuerza y, por tanto, de peso) entre el m3 (Unidad de volumen).
Sistema Técnico.
Se emplean el kp/m3 y el kp/dm3.
Sistema Cegesimal.
Se utilizaría la dina/cm3, que corresponde a la unidad del sistema internacional.
RELACIÓN ENTRE EL PESO ESPECÍFICO Y LA DENSIDAD.
El peso específico y la densidad son evidentemente magnitudes distintas como se ha podido comparar a través de las deficiniones que se dieron en la parte de arriba, pero entre ellas hay una íntima relación, que se va a describir a continuación.
Se recordará que el peso de un cuerpo es igual a su masa por la aceleración de la gravedad:
P= m . g
Pues bien, sustituyendo esta expresión en la definición del peso específico y recordando que la densidad es la razon m/V, queda:
Pe= p/v= m.g /V = m/V . g = d.g
El peso específico de una sustancia es igual a su densidad por la aceleración de la gravedad.
Como hemos mencionado las unidades, la unidad clásica de densidad (g/cm3) tiene la ventaja de ser un número pequeño y fácil de utilizar.
Lo mismo puede decirse del kp/cm3 como unidad de peso específico, con la ventaja de que numéricamente, coinciden la densidad expresada en g/cm3 con el peso específico expresado en kp/dm3.
VALORES DE DENSIDADES.
Aluminio:
Densidad (kg/m3): 2698,4; (20 ºC)
Plástico:
Densidad (0,910 g/cc) plástico.
Polietileno:
El polietileno, un plástico más común, se recalienta a .160°C de los mas livianos con una densidad de 0,905 gr.
Vidrio:
Densidad= 650 °C (1200 °F).

Presión Hidrostatica

Es la presión que ejerce un líquido en reposo, sobre un cuerpo sumergido dentro de él. Esta presión se origina debido al peso del líquido que actúa sobre el área o superficie del cuerpo. Para deducir una fórmula que permita evaluar la presión de un líquido (PL) sobre un cuerpo sumergido, a una distancia h del nivel superior (altura del fluido), analicemos la siguiente figura:
presion hidrostatica
Como un artificio, hemos construido un pequeño cilindro de altura “h” y área “S”:
formula presion hidrostatica
Con lo cual se obtiene:   PL = ϒL x h
La fórmula deducida nos indica que la presión de un líquido no depende de la forma del recipiente que lo contiene, sólo depende de la profundidad o altura del líquido y la naturaleza de éste.
Ejercicio Aplicativo:
Hallar la presión ejercida por una columna de agua en el fondo de un recipiente que, al estar inclinado un ángulo de 30° respecto a la horizontal, posee una longitud de 90cm.
Solución:
problema presion hidrostatica
Para evaluar la presión hidrostática se considera la altura “h” que es igual a:
h = 90 cm x Sen 30°
h = 45 cm
Sabemos que el peso especifico del agua (ϒ) es: 1 g-f/cm3
Entonces la presión es:
P = ϒ(H2O) x h = 1 g-f/cm3 x 45 cm
P = 45 g-f/cm2
También se puede expresar el resultado en unidades del sistema internacional (S.I.) teniendo en cuenta la siguiente equivalencia.
1 g-f/cm2 = 98 Pa
Entonces la presión será:
P = (45 x 98) Pa
P = 4410 Pa = 4410 N/m2


Prensa hidráulica

La prensa hidráulica es un mecanismo conformado por vasos comunicantes impulsados por pistones de diferentes áreas que, mediante una pequeña fuerza sobre el pistón de menor área, permite obtener una fuerza mayor en el pistón de mayor área. Los pistones son llamados pistones de agua, ya que son hidráulicos. Estos hacen funcionar conjuntamente a las prensas hidráulicas por medio de motores.
Antigua prensa hidráulica.
En el siglo XVII, en Francia, el matemático y filósofo Blaise Pascal comenzó una investigación referente al principio mediante el cual la presión aplicada a un líquido contenido en un recipiente se transmite con la misma intensidad en todas direcciones.1​ Gracias a este principio se pueden obtener fuerzas muy grandes utilizando otras relativamente pequeñas. Uno de los aparatos más comunes para alcanzar lo anteriormente mencionado es la prensa hidráulica, la cual está basada en el principio de Pascal.

Cálculo de la relación de fuerzas

Cuando se aplica una fuerza  sobre el émbolo de menor área  se genera una presión :
Esquema de fuerzas y áreas de una prensa hidráulica.

Del mismo modo en el segundo émbolo:
Se observa que el líquido está comunicado, luego por el principio de Pascal, la presión en los dos pistones es la misma. Por tanto se cumple que:
Esto es:
 y la relación de fuerzas: 
Luego, la fuerza resultante de la prensa hidráulica es:
Donde:
 = fuerza del émbolo menor en N.
 = fuerza del émbolo mayor en N.
 = área del émbolo menor en .
 = área del émbolo mayor en m².
PRESIÓN

Se le llama Presión, a la reacción inmediata que ejerce un cuerpo sobre otro en relación de peso o fuerza. La presión técnicamente se refiere a dos tipos fundamentales, opresión y compresión, la opresión es comúnmente asociada a la falta de libertad de un sujeto para movilizarse con plena independencia, y la compresión se refiere al esfuerzo o impedimento que realiza un cuerpo sobre otro impidiendo su salida de algún sitio.

La presión es aplicada en términos científicos, por ejemplo en la química, la presión de cierto vapor o gas puede provocar la ruptura de algún reactor, así como también en algún instrumento de medición puede arrojar datos relevantes de cualquier estudio. La presión es básicamente usada para determinar procesos en los que la temperatura juega un papel fundamental en la realización de algún experimento con una reacción química.


 Ejemplos resueltos de Presión

1.- ¿Cuál es la presión ejercida por una fuerza de 120 N que actúa sobre una superficie de 0.040 metros cuadrados?
Solución: Para ello vamos a tomar nuestros datos que el problema nos provee, por ejemplo nos da una fuerza de 120 N, y a su vez un área de 0.040 \displaystyle {{m}^{2}} , por lo que tenemos:
\displaystyle F=120N
\displaystyle A=0.040{{m}^{2}}
\displaystyle P= ?
Reemplazando estos datos en nuestra fórmula tenemos:
\displaystyle P=\frac{F}{A}=\frac{120N}{0.040{{m}^{2}}}=3000Pa
Por lo que obtenemos un total de 3000 pascales de presión ejercidas sobre la superficie.
Ahora compliquemos un poco más el problema y resolvamos el siguiente ejercicio.
2.- Una persona de 84 kg se para sobre la losa de una casa que tiene por superficie 225 metros cuadrados. ¿Cuál será la presión que esta persona ejerce sobre la losa?
Solución: En este caso tenemos nos hace falta encontrar una fuerza, puesto que no nos la proporciona el problema, sin embargo podemos hallarla de una manera muy sencilla. 
Recordemos que la fuerza es igual al peso, entonces podemos calcular el peso de la persona mediante la siguiente fórmula:
\displaystyle w=mg
Es decir que el peso es el producto de la masa multiplicada por la gravedad y con ello obtendremos la fuerza que necesitamos, por lo que:
\displaystyle w=(84kg)(9.81\frac{m}{{{s}^{2}}})=824.04N
Ahora si podemos calcular la presión ejercida sobre la losa
\displaystyle P=\frac{F}{A}=\frac{824.04N}{225{{m}^{2}}}=3.6624Pa
Podemos observar que no hay gran dificultad al resolver este tipo de ejercicios, veamos otro más.
3.- La presión atmosférica tiene un valor aproximado de 1 x10^5 Pa . ¿Qué fuerza ejerce el aire confinado en una habitación sobre una ventana de 50 cm x 75 cm?
Solución: En este caso nos pide hallar la fuerza que se ejerce sobre la ventana, para ello vamos a tomar nuestros datos:
\displaystyle P=1x{{10}^{5}}Pa
\displaystyle A=(50cm)(75cm)=3750c{{m}^{2}}
\displaystyle F= ?
Antes de poder reemplazar en la fórmula nuestros datos, debemos recordar que el área no lo podemos trabajar con centímetros cuadrados, para ello debemos convertir esa área en metros cuadrados, aplicando el siguiente factor de conversión
\displaystyle A=3750c{{m}^{2}}\left( \frac{1{{m}^{2}}}{10,000c{{m}^{2}}} \right)=0.375{{m}^{2}}
Ahora si podemos reemplazar en nuestra fórmula
\displaystyle P=\frac{F}{A}
Solo que el problema nos pide la fuerza, no la presión… Entonces vamos a despejar a “F”
\displaystyle F=P\cdot A
Reemplazando datos
\displaystyle F=(1x{{10}^{5}}pa)(0.375{{m}^{2}})=37500N
O lo que es igual a
\displaystyle 37.5kN (Kilo Newtons)
Presión
HIDROSTÁTICA
La hidrostática es la rama de la mecánica de fluidos que estudia los fluidos en estado de reposo; es decir, sin que existan fuerzas que alteren su movimiento o posición.
Reciben el nombre de fluidos aquellos cuerpos que tienen la propiedad de adaptarse a la forma del recipiente que los contiene. A esta propiedad se le da el nombre de fluidez .
Son fluidos tanto los líquidos como los gases, y su forma puede cambiar fácilmente por escurrimiento debido a la acción de fuerzas pequeñas.
Los principales teoremas que respaldan el estudio de la hidrostática son el principio de Pascal y el principio de Arquímedes .

Principio de Pascal

En física, el principio de Pascal es una ley enunciada por el físico y matemático francés Blaise Pascal (1623-1662).
x
Agua de mar: fluido salobre.

El principio de Pascal afirma que la presión aplicada sobre un fluido no compresible contenido en un recipiente indeformable se transmite con igual intensidad en todas las direcciones y a todas partes del recipiente.
Este tipo de fenomeno se puede apreciar, por ejemplo en la prensa hidráulica la cual funciona aplicando este principio.
Definimos compresibilidad como la capacidad que tiene un fluido para disminuir el volumen que ocupa al ser sometido a la acción de fuerzas.

Principio de Arquímedes

El principio de Arquímedes afirma que todo cuerpo sólido sumergido total o parcialmente en un fluido experimenta un empuje vertical y hacia arriba con una fuerza  igual al peso del volumen de fluido desalojado.
El objeto no necesariamente ha de estar completamente sumergido en dicho fluido, ya que si el empuje que recibe es mayor que el peso aparente del objeto, éste flotará y estará sumergido sólo parcialmente.
x
Sistema hidráulico para elevar pesos.

Propiedades de los fluidos

Las propiedades de un fluido son las que definen el comportamiento y características del mismo tanto en reposo como en movimiento.
Existen propiedades primarias y propiedades secundarias del fluido. 

Propiedades primarias o termodinámicas:
Densidad
Presión
Temperatura
Energía interna
Entalpía
Entropía
Calores específicos
ESTADOS DE AGREGACIÓN DE LA MATERIA

En física y química se observa que, para cualquier sustancia o mezcla, modificando sus condiciones de temperatura o presión, pueden obtenerse distintos estados o fases, denominados estados de agregación de la materia, en relación con las fuerzas de unión de las partículas (moléculas, átomos o iones) que la constituyen.
Todos los estados de agregación poseen propiedades y características diferentes; los más conocidos y observables cotidianamente son cuatro, llamados fases sólidalíquidagaseosa y plasmática. También son posibles otros estados que no se producen de forma natural en nuestro entorno, por ejemplo: condensado de Bose-Einsteincondensado fermiónico y estrellas de neutrones. Se cree que también son posibles otros, como el plasma.

Estado sólido

Los objetos en estado sólido se presentan como cuerpos de forma definida; sus átomos a menudo se entrelazan formando estructuras estrechas definidas, lo que les confiere la capacidad de soportar fuerzas sin deformación aparente. Son calificados generalmente como duros así como resistentes, y en ellos las fuerzas de atracción son mayores que las de repulsión. En los sólidos cristalinos, la presencia de espacios intermoleculares pequeños da paso a la intervención de las fuerzas de enlace, que ubican a las celdillas en formas geométricas. En los amorfos o vítreos, por el contrario, las partículas que los constituyen carecen de una estructura ordenada.
Las sustancias en estado sólido suelen presentar algunas de las siguientes características:
  • Cohesión elevada.
  • Tienen una forma definida y memoria de forma, presentando fuerzas elásticas restitutivas si se deforman fuera de su configuración original.
  • A efectos prácticos son incompresibles.
  • Resistencia a la fragmentación.
  • Fluidez muy baja o nula.
  • Algunos de ellos se subliman.

Estado líquido

Si se incrementa la temperatura de un sólido, este va perdiendo forma hasta desaparecer la estructura cristalina, alcanzando el estado líquido. Característica principal: la capacidad de fluir y adaptarse a la forma del recipiente que lo contiene. En este caso, aún existe cierta unión entre los átomos del cuerpo, aunque mucho menos intensa que en los sólidos. El estado líquido presenta las siguientes características:
  • Cohesión menor.
  • Poseen movimiento de energía cinética.
  • Son fluidos, no poseen forma definida, ni memoria de forma por lo que toman la forma de la superficie o el recipiente que lo contiene.
  • En el frío se contrae (exceptuando el agua).
  • Posee fluidez a través de pequeños orificios.
  • Puede presentar difusión.
  • Son poco compresibles.

Estado gaseoso

Se denomina gas al estado de agregación de la materia compuesto principalmente por moléculas no unidas, expandidas y con poca fuerza de atracción, lo que hace que los gases no tengan volumen y forma definida, y se expandan libremente hasta llenar el recipiente que los contiene. Su densidad es mucho menor que la de los líquidos y sólidos, y las fuerzas gravitatorias y de atracción entre sus moléculas resultan insignificantes. En algunos diccionarios el término gas es considerado como sinónimo de vapor, aunque no hay que confundir sus conceptos: vapor se refiere estrictamente a aquel gas que se puede condensar por presurización a temperatura constante.
Dependiendo de sus contenidos de energía o de las fuerzas que actúan, la materia puede estar en un estado o en otro diferente: se ha hablado durante la historia, de un gas ideal o de un sólido cristalino perfecto, pero ambos son modelos límites ideales y, por tanto, no tienen existencia real.[cita requerida]
En los gases reales no existe un desorden total y absoluto, aunque sí un desorden más o menos grande.,

Estado plasmático

El plasma es un gas ionizado, es decir que los átomos que lo componen se han separado de algunos de sus electrones. De esta forma el plasma es un estado parecido al gas pero compuesto por aniones y cationes(iones con carga negativa y positiva, respectivamente), separados entre sí y libres, por eso es un excelente conductor. Un ejemplo muy claro es el Sol.
En la baja atmósfera terrestre, cualquier átomo que pierde un electrón (cuando es alcanzado por una partícula cósmica rápida) se dice que está ionizado. Pero a altas temperaturas es muy diferente. Cuanto más caliente está el gas, más rápido se mueven sus moléculas y átomos, (ley de los gases ideales) y a muy altas temperaturas las colisiones entre estos átomos, moviéndose muy rápido, son suficientemente violentas para liberar los electrones. En la atmósfera solar, una gran parte de los átomos están permanentemente «ionizados» por estas colisiones y el gas se comporta como un plasma.


ELASTICIDAD
El término 'elasticidad' se utiliza para hacer referencia a aquella capacidad de la física que permite que algunos elementos cambien su forma de acuerdo a si están bajo estrés físico (es decir, estiramiento) o a si están en su posición de reposo. Algunos materiales tienen la propiedad de ser particularmente elásticos y por tanto son utilizados para la elaboración de productos en los cuales esta propiedad es útil (por ejemplo, algunos tejidos que deben adaptarse a la forma del cuerpo de una persona).

Propiedad de algunos elementos de poder cambiar de forma si están bajo una fuerza externa y luego recuperar su formato inicial.

La elasticidad es la capacidad de los cuerpos de presentar deformaciones cuando son sometidos a fuerzas externas que pueden hacer que las mencionadas deformaciones se vuelvan irreversibles, o en su defecto, que adopten su forma originaria una vez que la acción de estas fuerzas desapareció.

Ejemplos de elasticidad

  1. Los resortes.
  2. La base de un trampolín.
  3. El arco para lanzar flechas.
  4. Las cañas de pescar.
  5. Los colchones.
  6. Las pulseras de goma.
  7. La ropa.
  8. El chicle, al ser masticado.
  9. La cuerda de una guitarra, en estado de tensión.
  10. Los cables.

Máquinas térmicas Una máquina térmica   es un dispositivo que realiza un trabajo mediante un proceso  de paso de energía desde un foc...